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The variation of the convergence time ~, as a function of the storage capacity 
is studied numerically for systems ranging in size from N= 1000 to N= 16,000 

neurons, z is found to increase like ,~e xp [ -A(e~ -a ) ]  as one nears the 
critical storage capacity ~c = 0.142 = 0.002. 
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Recently, the question of convergence time in the Hopfield model  of neural 
networks has become of  interest as one of the few remaining problems in 
the model  still in need of a more complete understanding. ~ Previous 
work has shown that  at fixed (nonzero)  storage capacity ~, the convergence 
time to a fixed point  r grows like z ~ O(ln N) (where N is the number  of 
nodes in the network).  (1'2) As c ~ 0 ,  it can be shown analytically that 

~ O(ln In N). (7) In this paper we are concerned with the opposite limit, 
namely the limit as e approaches its critical value ec = 0.142 _+ 0.002 at fixed 
but large N. 

In the closely related problem of spin-glasses, (3) the relaxation time 
is thought  to diverge, as the temperature T goes to zero, like ln(r /%) 
T -~, where /3 is a constant.  As T approaches the critical temperature Tc 
from above, the relaxation time is thought  to have either a power law, 
r ~ ( T -  To) -~, or a Vogel-Fulcher ,  ~ e x p [ A / ( T -  Tc)], behavior  (see, 
e.g., ref. 4 for recent references). Since the spin-glass-like transition at ec in 
the Hopfield model  at zero temperature has been rigorously studied both  
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analytically and numerically, (s'6) we have looked for similar behavior for 
the convergence time, r. Instead, we find the convergence time to be consis- 
tent with z- ,~exp[-A(N)(c~c-~)] ,  which compares more favorably to the 
results for T =  0 spin-glasses. 3 To see how this comes about, let us consider 
the problem in more detail. 

The Hopfield model is defined for an N-spin Ising system by choosing 
P = a N  patterns { i} at random and "storing" them in a network by 
forming Hebbian couplings {J~}: 

J~ = y, ~ . ~  (1) i j 
,u 

The network is then allowed to update according to a zero-temperature, 
fully parallel dynamics: 

Si(t+ l)=sgnQ~ (2) 

The system is started with a corrupted version of any of the stored patterns 
{r The corrupted pattern will evolve following the above dynamics. If 
the initial overlap m ( 0 ) - ( I / N ) E j  ~Sj(0)  is within the domain of attrac- 
tion of the learned pattern, then either the network recognizes the stored 
pattern perfectly as the dynamics brings the corrupted patterns back to the 
learned pattern (for c~= 0); or it recognizes the pattern somewhat imper- 
fectly as the dynamics brings it to a state with significant overlap with the 
stored pattern (for 0 < c~< 0.142_+ 0.002(5 '6)) ,  As mentioned above, this 
retrieval dynamics is expected to become slow near the phase transition 
driven by the storage capacity c~. We study here the variation of the 
retrieval time for patterns with an initial overlap m(0)=0.80 and 
m(0) = 0.95 as a function of c~. These values of the overlap should be large 
enough that most of the initial states end up near the desired stored state 
a s  ~ --~ ~c.  

Our simulations are done on fully connected networks of N =  16,000 
and N =  1000 neurons. The computer algorithm used is the multineuron 
coding algorithm discussed in ref. 6, to which we refer the interested reader 
for details. 

After starting the system in an initial state with one of the above over- 
laps, the time needed for convergence to a fixed point was measured. In all 
cases, the resulting final overlap m(oo) was in the range m(oe)~>0.975. 
Figure 1 shows three histograms for the distribution of the convergence 

3 Preliminary results reported at the Workshop on Neural Networks, CTS, He, Bangalore, 
March 1990. 
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Fig. 1. Histograms for the distribution of convergence time for m(0)=0.95. From back to 
front; e =0.70, 0.110, 0.130. The data are taken at N= 16,000. 

time taken at e=0.070,  c~=0.110, and e=0 .130  with m(0)--0.95 in each 
case. Each histogram represents 4000 initial starting configurations chosen 
from 20 sets of random patterns. Note that the average relaxation time { z )  
increases as c~ increases toward c~ c, while at the same time the distribution 
spreads out. Since the functional form of the distribution of relaxation 
times is not known and previous experience shows that it may indeed have 
a strong N dependence, (z) we concentrate our analysis on the average 
relaxation time. 

Figure 2 shows a plot of the average convergence time {~) as a func- 
tion of e for both m(0)=  0.80 and m(0) = 0.95. From this graph a Vogel- 
Fulcher type of behavior is ruled out and fits to a power law were not 
convincing. In the insert is shown a plot of l n (~ )  vs. c~c- c~. This indicates 
that the average convergence time behaves like ~ , - - exp [ -A(N) (e  c -  ~)P], 
with /3 of order unity. The actual value of p may have an N and m(0) 
dependence l-we find /3~0.60 to be a good fit for N =  16,000 and 
m(0) = 0.95], but the data are not accurate enough to give a clear indica- 
tion. From previous results for spin-glasses, such a functional form is, as 
explained earlier, not totally unexpected. 

In summary, we find that the average convergence time increases 
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Plot of average convergence time as a function of e for m ( 0 ) =  0.80 (circles) and 
m(0) = 0.95 (squares) at N =  16,000, and for m ( 0 ) =  0.95 (diamonds) at N =  1000. The insert 
shows the best fit as discussed in the text, 

exponentially as c~--+ 7c. These results should be interpreted with caution 
until such time as they can be confirmed on larger systems, which experien- 
ces (2) indicates may be on the order of N ~ 1 0  6. 
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